Noninvolvement of acyl carrier protein with citrate synthase and malate synthase.
نویسندگان
چکیده
Acyl carrier protein (ACP coli) was isolated from commercially grown Escherichia coli B and was acetylated by chemical methods. Biological activity of the synthesized acetyl-ACP coli was checked in an in vitro fatty acid-synthesizing system isolated from E. coli B. Since acetyl-ACP is preferred over acetyl-coenzyme A (CoA) as a substrate in these reactions, the possibility that it may substitute for acetyl-CoA in biosynthetically and oxidatively important cellular pathways (glyoxylate and Krebs cycles, respectively) was examined. Acetyl-ACP was tested for substrate activity with the enzyme of each cycle which has been found to utilize acetyl-CoA. Crystalline citrate synthase (EC 4.1.3.7) of porcine origin (Calbiochem) was found to be inactive with acetyl-ACP coli, which acted neither as a substrate nor as an inhibitor in the presence of acetyl-CoA. Malate synthase (EC 4.1.3.2) of the acetate type was isolated from acetate-grown cells of a mutant of E. coli K-12 (VGD(3)H(5)) and was also found to be inactive with acetyl-ACP coli. The significance of these results and of the recent discovery of another phospho-pantetheine-containing protein are discussed.
منابع مشابه
Interaction between citrate synthase and malate dehydrogenase. Substrate channeling of oxaloacetate.
The interactions between pig heart citrate synthase and mitochondrial malate dehydrogenase or cytosolic malate dehydrogenase were studied using the frontal analysis method of gel filtration and by precipitation in polyethylene glycol. This method showed that an interaction between citrate synthase and mitochondrial malate dehydrogenase occurred but no interaction between citrate synthase and cy...
متن کاملInteraction between Citrate Synthase and Malate Dehydrogenase
The interactions between pig heart citrate synthase and mitochondrial malate dehydrogenase or cytosolic malate dehydrogenase were studied using the frontal analysis method of gel filtration and by precipitation in polyethylene glycol. This method showed that an interaction between citrate synthase and mitochondrial malate dehydrogenase occurred but no interaction between citrate synthase and cy...
متن کاملMitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes.
We tested the hypothesis of a lower respiratory capacity per mitochondrion in skeletal muscle of type 2 diabetic patients compared with obese subjects. Muscle biopsies obtained from 10 obese type 2 diabetic and 8 obese nondiabetic male subjects were used for assessment of 3-hydroxy-Acyl-CoA-dehydrogenase (HAD) and citrate synthase activity, uncoupling protein (UCP)3 content, oxidative stress me...
متن کاملThe interaction of yeast citrate synthase with yeast mitochondrial inner membranes.
The specific interaction of yeast citrate synthase with yeast mitochondrial inner membranes was characterized with respect to saturability of binding, pH optimum, effect of ionic strength, temperature response, and inhibition by oxalacetate. The binding ability of the inner membranes is inhibited by proteolysis and heat treatment, which implies that the membrane component(s) responsible for bin...
متن کاملQuantitation of the interaction between citrate synthase and malate dehydrogenase.
Formation of a bienzyme complex of pig heart mitochondrial malate dehydrogenase and citrate synthase in a buffered system is demonstrated by means of a covalently attached fluorescent probe to citrate synthase. Assuming 1:1 stoichiometry of the enzymes in the complex, an apparent dissociation constant of 10(-6) M was calculated from fluorescence anisotropy measurements. The effect of various me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 96 4 شماره
صفحات -
تاریخ انتشار 1968